Kingwood College Respiratory care Program
 RSPT 1438 Tech I
 Unit 7.2
 Tutorial on calculation of 02 tank duration

In all calculations of tank duration, one must first convert the pressure in the tank into liters so that one can see how fast a particular flowrate will deplete the tank.

E cylinder of gas

Calculation of the duration of an E cylinder uses the following formula. First you will convert the pressure into liters so that you can figure the time set liter per minute will deplete the tanks
pisg = read the monometer
.28 factor for a E tank
flow rate= set flow rate on the flometer

$$
\text { duration of tank }=\frac{\text { pisg x } 28}{\text { flow rate in }} \text { Ipm }
$$

your answer will be in minutes so first you subtract 15 minutes for the time taken in changing out tanks, if the resulting number is more than 60 minutes [1hour] then you divide the minutes by 60 to get the number of hours of duration

$$
\frac{\text { duration in minutes }-15 \text { minutes }}{60} \text { to get duration in hours }
$$

EXAMPLE:

Your E tank holds 2200 psig and you must use 15 lpm for a non-rebreather mask. How much time do you have before you need to change tanks?

$$
\begin{gathered}
\text { duration of tank }=\frac{\operatorname{pisg} \times .28}{\text { flow rate in Ipm }} \\
\text { duration of tank }=\frac{2200 \times .28}{15 \mathrm{lpm}} \\
\text { duration of tank }=\frac{616 \text { liters of gas }}{15 \mathrm{lpm}} \\
\text { duration of tank }=41 \text { minutes }
\end{gathered}
$$

we must subtract 15 minutes for changing the tanks so there is only 26 minutes left in this tank

The formula for calculation of the duration of a cylinder of 02 is almost identical to that of the e cylinder but because the H tank is about 10 x the size of the E cylinder, one uses a different factor
pisg = read the monometer
3.14 factor for a H tank
flow rate= set flow rate on the flometer

$$
\text { duration }=\frac{\text { pisg } \times 3.14}{\text { flow rate in } \mathrm{Ipm}}
$$

your answer will be in minutes so first you subtract 15 minutes for the time taken in changing out tanks, if the resulting number is more than 60 minutes [1hour] then you divide the minutes by 60 to get the number of hours of duration
duration in minutes -15 minutes
60
to get duration in hours

EXAMPLE:

Your H tank hold 2200 psig and you must use 15 lpm for a non-rebreather mask. How much time do you have before you need to change tanks?

$$
\begin{gathered}
\text { duration of tank }=\frac{\mathrm{pisg} \times 3.14}{\text { flow rate in Ipm }} \\
\text { duration of tank }=\frac{2200 \times 3.14}{15 \mathrm{lpm}} \\
\text { duration of tank }=\frac{6908 \text { liters of gas }}{15 \mathrm{lpm}} \\
\text { duration of tank }=460 \text { minutes }
\end{gathered}
$$

we must subtract 15 minutes for changing the tanks so there is only 445 minutes left in this tank
which is $445 / 60$ or 7.4 hours of gas in the tank.
duration of a cylinder of liquid 02 LOX
Calculation of the duration of a cylinder of liquid 02 is in two parts:[a] find the gas remaining then [b] calculate duration.
[A] gas remaining $=\frac{\text { weight } \times 860}{2.5 \mathrm{lb} / \mathrm{L}}$
$[B]$ duration of gas = gas remaining
Ipm

Example

Your liquid 02 tank weighs 10 pounds. At a liter flow of 3 lpm what is the duration of the tank?
[A] gas remaining $=10 \times 860=\underline{8600 / 2.5}$
$2.5 \mathrm{Ib} / \mathrm{L}$
gas remaining $=3440$ liters
[B] duration $=\frac{3440 \text { liters }}{3 \mathrm{lpm}}=1146$ minutes or $\frac{1146}{60}=19.1 \mathrm{hrs}$

Once you have your duration in hours for simplicity's sake, you might want to convert the hours into hours and minutes
for instance, in the last example you ended up 19.1 hours. This is awkward so you might be better off finding out how many hours and minutes you have rather than in minutes or in fractions of an hour.

If you take the $.1 \times 60$ you will see that .1 hours is 24 ------------so 19.1 hours is 19 hours and 24 minutes
return to lecture on unit 7.2 regulators and tanks

