

New Modes and New Concepts In Mechanical Ventilation

Prof Yehia Khater

Department of Anesthesia and Surgical Intensive Care Cairo University

New Ventilation Modes

•Dual Control

Within-a-breath switches from PC to VC during the breath

• VAPS and pressure augmentation

Breath-to-Breath

- Pressure-Limited, Flow-Cycled Ventilation
 - Volume support ventilation VSV
 - Variable-pressure-support
- Pressure-Limited, Time-Cycled Ventilation
 - $\bullet \ \ Pressure-regulated \ volume-control \ PRVC \\$
 - Adaptive pressure ventilation APV
 - Auto-flow
 - Volume-control
 - Variable pressure control

Siemens 300 Cardiopulmonary corporation Venturi,

Siemens 300 Hamilton Galileo Draeger Evita 4 Puritan Bennett 840 Cardiopulmonary corporation Venturi

- •Proportional-Assist Ventilation
- •Adaptive Support Ventilation
- Automatic Tube Compensation
- •Airway Pressure-Release Ventilation

Proposed advantages

Positive attributes of PCV or PSV

- Decelerating variable flow
- Spontaneous breathing
 - Improvement of pulmonary gas exchange
 - Decrease in the work of breathing
 Putensen et al 1999, Am 1 Respir Crit Care Med 159:1241-1248
 - Improvement in cardiovascular effects and organ perfusion (kidney, liver and splanchnic area)

Hering and Putensen, 2000. Am J Respir Crit Care Med 161:A549 Bonnet et al 1982. Crit Care Med 15:106-112

•Constant tidal volume

Automatic weaning

What type of lung diseases is AutoFlow® suitable for?

- -Post surgical cases where acute restriction is evident
- -Acute lung oedema where high airway pressures are initially acceptable but as the treatment program takes effect pressures will go down automatically and volumes will stay constant
- -In cases where local atelectasis resulting from trauma or pneumonia requires frequent repositioning of the patient.
- -All start up ventilation therapy scenarios where there is limited information on disease status available

RESPIRATORY CARE • FEBRUARY 2005 VOL 50 NO 2

What is PAV?

- •PAV is a form of breathing support for patients whose:
 - -Spontaneous breathing requires assistance
 - -WOB is increased as a result of
 - higher resistance and/or
 - lower compliance

المالية المالية

PAV And Power Steering

- •How are PAV and power steering similar?
 - -Both are mechanical systems that sense and then amplify muscle effort. Both share common issues regarding stability and instability (runaway)
- •A small vehicle may need little or no power steering
- •A large vehicle may not be steerable without power steering

•Why don't the wheels keep on turning? Because you are in control

PAV+ Patient Selection -Cardiovascular and Acid Base Status

- •Stable hemodynamic status
- Patient with good electrolyte balance
- •Patient who has a good acid-base balance demonstrated by pH between 7.35 to 7.45 and pCO₂ between 45 and 55

Patient in shock is not a good candidate for PAV+

PAV+ Warning Signs for Inadequate Ventilation

- •Respiratory rate >35
- ${}^{\bullet}SpO_2 < 90\%$
- **■**pH < 7.35 (respiratory acidosis)
- ■Heart rate > 140/min or sustained 20 % increase in heart rate.
- ■Systolic BP >180 mm Hg, diastolic > 90 mm Hg
- Anxiety
- الموة الغانة

Diaphoresis (visible perspiration)

Yehia Khater

Automatic Tube Compensation (ATC)

Compensation of tube resistance

Easy to set

- Endotracheal/ tracheostomy tube diameter
- Compensation degree in %
- Electronic extubation Any mode !!!!!!!!!!!

• Inspiratory & Expiratory compensation

 Expiratory tube compensation can be switched off while inspiratory tube compensation is on

ATC and PSV What is the difference?

Difference Between ATC and PS

- PS is a user set, fixed pressure that remains constant throughout the inspiratory phase irrespective of the patients flow rate.
- ATC is a user set level of compensation (0-100%). The driving pressure will vary according to the tube type, size set, compensation level and inspiratory flow rate

New Modes and New Concepts In Mechanical Ventilation

Prof Yehia Khater

Department of Anesthesia and Surgical Intensive Care Cairo University

Yehia Khate

Mechanical Ventilation of Severe Sepsis Grade B •Protective lung strategy: low Vt 4-8 ml/kg Grade B •P plat <30 cmH2O •Permissive hypercapnia Grade C Grade E •Best PEEP (recruitment) Grade E •Prone position (in places able to) Grade C •Semi-recombinant position 45 ° decrease VAP Grade A •Weaning protocols SBT, T-piece or 5 PSV + 5 PEEP •No Routine PACP Conservative fluid therapy

Protective Lung Strategy • Low Tidal Volume 4-8 ml/kg • P plat < 35 cmH₂O • Best PEEP • Permissive Hypercarbia (C) Yehia Khater

Weaning Strategy

• SBT

Grade A

Repeat SBT

Grade A

Management of Failed SBT

Grade B

Weaning protocols

T pieces or electronic protocols

Grade A

Yehia Khater

Anesthesia, Sedation and Analgesia Neuromuscular Blockade

•Fast track extubation

Grade A

- •Sedation protocol for mechanically ventilated patients with standardized subjective sedation scale target.
 - Intermittent bolus
 - Continuous infusion with daily awakening/retitration

•Neuromuscular blockers should be avoided due to the risk of prolonged neuromuscular blockade

Modes allowing Spontaneous Breathing

- No conclusive evidence that CMV is more beneficial than a ventilation mode which supports SB
- On the other hand, benefits (in normal lungs, lungs with minor dysfunction and in some severe dysfunctions) of modes maintaining SB
 - improvement of pulmonary gas exchange
 - decrease in the work of breathing
 - improvement in cardiovascular effects and organ perfusion (kidney, liver and splanchnic area) have been proven at least for some of the modes allowing SB, during application

Putensen c., N. Mutz, G. Putensen-Him-mer, 1. Zinserling. 1999. Am 1 Respir Crit Care Med 159:1241-1248

Staudinger T., H. Kordova, M. Roggla, P.Tesinsky, G. J. Locher, K. Laczika, S. Knapp, M. Frass. 1998.. Crit Care Med 26:1518-1522

Yehia Khater

Modes allowing Spontaneous Breathing

- CMV suppress SB activity by hyperventilation, sedation or muscle relaxation.
- Hyperventilation and respiratory alkalosis result in
 - decrease of cardiac out put
 - cerebral vasoconstriction
 - increased oxygen consumption in tissue
 - broncho-constriction
 - significant changes in ventilation/perfusion ratio V/P

Hudson L. D., R. S. Hurlow, K. e. Craig, D. 1. Pierson. 1985. Am Rev Respir Dis 132:1071-1074

llpepper J. A., J. E. Rinaldo, R. M. Rogers. 1985. Am Rev Respir Dis 132:1075-1077

Modes allowing Spontaneous Breathing

- In comparison to an initial period of controlled ventilation for 72 hours followed by weaning, maintained SB with APRV/BIPAP is associated with significantly
 - fewer days on a ventilator,
 - earlier extubation
 - shorter stays in the ICU

Putensen C., S. Zech, 1. Zinserling. 1998.. Am 1 Respir Crit Care Med 157:A45

Yehia Khater

Spontaneous Breathing

The influence of (CMV), (IMV) and (BiPAP) on duration of intubation and consumption of analgesics and sedatives in adult cardiac surgery.

- •Rathgeber et al, 1997 Eur J Anaesthesiol;14(6):576-582.
- •596 post cardiac-surgery patients.
- •87 Patients were randomized to the 3 groups
- •Uneven randomization
- •CMV 123 pts, IMV group 431 pts, and biphasic CPAP group only 42 pts.
- •Pts in the biphasic CPAP group had about 3–4 h shorter duration of intubation. Pts in CMV required greater sedation and analgesia than IMV or biphasic CPAP

•Conclusion: maintenance of spontaneous breathing during biphasic CPAP improved patient comfort and thus reduced pain and anxiety.

Spontaneous Breathing

- •Comparison of ventilatory and hemodynamic effects of BIPAP and S-IMV/PSV for postoperative short-term ventilation in patients after coronary artery bypass grafting.
- •Kazmaier S, Rathgeber J, Buhre W, Buscher H, Busch T, Mensching K, Sonntag H
- •Eur J Anaesthesiol 2000;17(10):601-610.
- •24 patients after CABG
- •no difference in gas exchange or hemodynamic variables.
- •PIP was lower with BIPAP than with SIMV or PSV.

