New Modes and New Concepts
In
Mechanical Ventilation

Prof Yehia Khater

Department of Anesthesia and Surgical Intensive Care
Cairo University
New Ventilation Modes

- **Dual Control**
 - Within-a-breath switches from PC to VC during the breath
 - VAPS and pressure augmentation

- **Breath-to-Breath**
 - Pressure-Limited, Flow-Cycled Ventilation
 - Volume support ventilation VSV
 - Variable-pressure-support
 - Pressure-Limited, Time-Cycled Ventilation
 - Pressure-regulated volume-control PRVC
 - Adaptive pressure ventilation APV
 - Auto-flow
 - Volume-control
 - Variable pressure control

- **Proportional-Assist Ventilation**
- **Adaptive Support Ventilation**
- **Automatic Tube Compensation**
- **Airway Pressure-Release Ventilation**

Yehia Khater
Agenda

1. Dual Modes
2. Volume modes with Autoflow
3. PAV
4. ATC

SIMV
Synchronized Intermittent Mandatory Ventilation
SIMV- AutoFlow

Synchronized Intermittend Mandatory Ventilation
- volume controlled mode
- mandatory ventilation for patients without spontaneous breathing activities
- spontaneous breathing activities are possible ⇒ Trigger ⇒ synchronized SIMV- breath or PS above the CPAP-level
- Settings: F\text{\textsubscript{O}2}, \text{v}\text{e}, \text{f}, \text{t}\text{insp}, \text{p}\text{max}, Flow, CPAP (PEEP), PS-level, Ramp
- add. settings: ATC, AutoFlow, Flow trigger

- » AutoFlow is activated
- » three test breaths
- » peak pressure is cut off
- » decelerating flow
- » Room to breathe

Why Dual Targeted Ventilation?

An attempt to achieve the best combination of volume and pressure targeted ventilation

- **Volume Targeted**
 - Constant Gas flow
 - Guaranteed Volume

- **Pressure Targeted**
 - Decelerating Gas flow
 - Pressure limited

A decelerating gas flow pattern is more likely to match flow demands of a critically ill patient
Proposed advantages

• Positive attributes of PCV or PSV
 – Decelerating variable flow
 – Spontaneous breathing
 • Improvement of pulmonary gas exchange
 • Decrease in the work of breathing
 Putensen et al 1999, Am J Respir Crit Care Med 159:1241-1248
 • Improvement in cardiovascular effects and organ perfusion
 (kidney, liver and splanchnic area)

• Constant tidal volume
• Automatic weaning

AutoFlow®
Meeting Patient’s Flow Demands

Not a mode
A mode enhancement
Two features:
Open exhalation valve
Gas flow decelerating
Apply to any volume targeted mode

Yehia Khater
“Breath-to-Breath” Variation

Airway Pressure (Paw)

<table>
<thead>
<tr>
<th>Base</th>
<th>+3</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3</td>
<td>+3</td>
</tr>
</tbody>
</table>

Increasing pressure to maintain volume target

Worsening Compliance

Automated, decreasing pressure

Improved Compliance

Yehia Khater

What type of lung diseases is AutoFlow® suitable for?

- Post surgical cases where acute restriction is evident

- Acute lung oedema where high airway pressures are initially acceptable but as the treatment program takes effect pressures will go down automatically and volumes will stay constant

- In cases where local atelectasis resulting from trauma or pneumonia requires frequent repositioning of the patient.

- All start up ventilation therapy scenarios where there is limited information on disease status available

Yehia Khater

RESPIRATORY CARE • FEBRUARY 2005 VOL 50 NO 2
What is PAV?

• PAV is a form of breathing support for patients whose:
 – Spontaneous breathing requires assistance
 – WOB is increased as a result of
 • higher resistance and/or
 • lower compliance

Understanding PS—Weak Effort

Pressure\textsubscript{wye} Time

Flow\textsubscript{wye} Time
Understanding PS—Modest Effort

Pressure\textsubscript{wye} \quad Time

Flow\textsubscript{wye} \quad Time

[Diagram showing Pressure\textsubscript{wye} and Flow\textsubscript{wye} over time with a ventilator and the terms 'Active Effort' and 'Trigger Only' highlighted.]

Understanding PS—Aggressive Effort

Pressure\textsubscript{wye} \quad Time

Flow\textsubscript{wye} \quad Time

[Diagram showing Pressure\textsubscript{wye} and Flow\textsubscript{wye} over time with a ventilator and the term 'Aggressive Effort' highlighted.]
PAV And Power Steering

• How are PAV and power steering similar?
 – Both are mechanical systems that sense and then amplify muscle effort. Both share common issues regarding stability and instability (runaway)
• A small vehicle may need little or no power steering
• A large vehicle may not be steerable without power steering
• Why don’t the wheels keep on turning? Because you are in control

Power Steering Examined

• If power steering is a good model for PAV, let’s take a look.
Power Steering Examined

Yehia Khater

Power Steering And Stability

• Properties of the system:
 – The directional control of the car is managed by the driver.
 – Stability is a function of sensory input, hand-eye coordination, pattern recognition and the properties of the power steering system.
 – When neural processing is compromised (alcohol, drugs, fatigue, etc), directional stability is unlikely.

Yehia Khater
Equation Of Motion

Pressure to inflate the lung-thorax = pressure to move the gas through the airways + pressure to expand the elastic lung-thorax

\[P_{\text{Mus}}(t) = V_i(t) * R_{ET} + V_i(t) * R_L + V_T(t) * E_L \]

The % Support Control

\[P_{\text{GRADIENT}} = P_Y + P_{\text{Mus}} \]

Yehia Khater
PAV+ Settings

The WOB bar gives a very clear indication to the clinician, the effectiveness of the % support selected. The % support setting should be adjusted to maintain the WOB PT indicator in the green area. If the indicator is to the left, the patient is being over-supported and if it is to the right, the patient is being under-supported. The WOB PT indicator also shows the proportion of patients inspiratory work to overcome elastance and resistance of the system.
PAV+ - Work of Breathing Bar (2)

Shadow Trace

The WOB TOT indicator is the estimated WOB of the patient and ventilator during inspiration. The aim is for this to also be in the green area.

The shadow trace shows the estimated lung pressure (P-lung) and the idea is this trace should match the circuit pressure trace as closely as possible.

PAV+ Patient Selection - Cardiovascular and Acid Base Status

- Stable hemodynamic status
- Patient with good electrolyte balance
- Patient who has a good acid-base balance demonstrated by pH between 7.35 to 7.45 and pCO₂ between 45 and 55
- Patient in shock is not a good candidate for PAV+
PAV+ Warning Signs for Inadequate Ventilation

- Respiratory rate > 35
- SpO₂ < 90%
- pH < 7.35 (respiratory acidosis)
- Heart rate > 140/min or sustained 20 % increase in heart rate.
- Systolic BP > 180 mm Hg, diastolic > 90 mm Hg
- Anxiety
- Diaphoresis (visible perspiration)

Automatic Tube Compensation (ATC)

- **Compensation of tube resistance**
 - Easy to set
 - Endotracheal/ tracheostomy tube diameter
 - Compensation degree in %

- Electronic extubation
 - Any mode !!!!!!!!!!

- Inspiratory & Expiratory compensation

- Expiratory tube compensation can be switched off while inspiratory tube compensation is on
ATC and PSV
What is the difference?

Difference Between ATC and PS
• PS is a user set, fixed pressure that remains constant throughout the inspiratory phase irrespective of the patients flow rate.
• ATC is a user set level of compensation (0-100%). The driving pressure will vary according to the tube type, size set, compensation level and inspiratory flow rate.

Automatic Tube Compensation
ATC vs PSV

Pressure difference between tube connector and distal tube end of a 7.5 mm tube

Yehia Khater
ATC - How to activate

Thank You
New Modes and New Concepts
In Mechanical Ventilation

Prof Yehia Khater

Department of Anesthesia and Surgical Intensive Care
Cairo University

Mechanical Ventilation of Severe Sepsis

• Protective lung strategy: low Vt 4-8 ml/kg
 Grade B

• Pplat \textless 30 cmH\textsubscript{2}O
 Grade B

• Permissive hypercapnia
 Grade C

• Best PEEP (recruitment)
 Grade E

• Prone position (in places able to)
 Grade E

• Semi-recumbent position 45° decrease VAP
 Grade C

• Weaning protocols SBT, T-piece or 5 PSV + 5 PEEP
 Grade A

• No Routine PACP
 Grade B

• Conservative fluid therapy
 Grade C
Protective Lung Strategy

• Low Tidal Volume 4-8 ml/kg
 1B

• P plat < 35 cmH₂O
 1B

• Best PEEP
 1C

• Permissive Hypercarbia
 1C

Patient Management

• Semi recombinant position 45° VAP
 1B

• Prone Position
 2C

• Conservative fluid therapy
 1C

• No Routine PCAP
 1B
Weaning Strategy

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• SBT</td>
<td>Grade A</td>
</tr>
<tr>
<td>• Repeat SBT</td>
<td>Grade A</td>
</tr>
<tr>
<td>• Management of Failed SBT</td>
<td>Grade B</td>
</tr>
<tr>
<td>• Weaning protocols</td>
<td></td>
</tr>
<tr>
<td>T pieces or electronic protocols</td>
<td>Grade A</td>
</tr>
</tbody>
</table>

Anesthesia, Sedation and Analgesia

Neuromuscular Blockade

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fast track extubation</td>
<td>Grade A</td>
</tr>
<tr>
<td>• Sedation protocol for mechanically ventilated patients with standardized subjective sedation scale target.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1B</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intermittent bolus</td>
</tr>
<tr>
<td></td>
<td>Continuous infusion with daily awakening/retitrations</td>
</tr>
<tr>
<td>• Neuromuscular blockers should be avoided due to the risk of prolonged neuromuscular blockade</td>
<td>1B</td>
</tr>
</tbody>
</table>
Modes allowing Spontaneous Breathing

- No conclusive evidence that CMV is more beneficial than a ventilation mode which supports SB
- On the other hand, benefits (in normal lungs, lungs with minor dysfunction and in some severe dysfunctions) of modes maintaining SB
 - improvement of pulmonary gas exchange
 - decrease in the work of breathing
 - improvement in cardiovascular effects and organ perfusion (kidney, liver and splanchnic area) have been proven at least for some of the modes allowing SB, during application

Modes allowing Spontaneous Breathing

- CMV suppress SB activity by hyperventilation, sedation or muscle relaxation.
- Hyperventilation and respiratory alkalosis result in
 - decrease of cardiac output
 - cerebral vasoconstriction
 - increased oxygen consumption in tissue
 - broncho-constriction
 - significant changes in ventilation/perfusion ratio V/P

Modes allowing Spontaneous Breathing

- In comparison to an initial period of controlled ventilation for 72 hours followed by weaning, maintained SB with APRV/BIPAP is associated with significantly
 - fewer days on a ventilator,
 - earlier extubation
 - shorter stays in the ICU

Spontaneous Breathing

The influence of (CMV), (IMV) and (BiPAP) on duration of intubation and consumption of analgesics and sedatives in adult cardiac surgery.

- 596 post cardiac-surgery patients.
- 87 Patients were randomized to the 3 groups
- Uneven randomization
- CMV 123 pts, IMV group 431 pts, and biphasic CPAP group only 42 pts.
- Pts in the biphasic CPAP group had about 3–4 h shorter duration of intubation. Pts in CMV required greater sedation and analgesia than IMV or biphasic CPAP
- Conclusion: maintenance of spontaneous breathing during biphasic CPAP improved patient comfort and thus reduced pain and anxiety.
Spontaneous Breathing

- Comparison of ventilatory and hemodynamic effects of BIPAP and S-IMV/PSV for postoperative short-term ventilation in patients after coronary artery bypass grafting.
 - Kazmaier S, Rathgeber J, Buhre W, Buscher H, Busch T, Mensching K, Sonntag H
 - 24 patients after CABG
- No difference in gas exchange or hemodynamic variables.
- PIP was lower with BIPAP than with SIMV or PSV.

Thank You