

Patient – Ventilator Asynchrony: Causes, Solutions and New Modes of Ventilation!

> Bob Kacmarek PhD, RRT Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts

Potential Conflicts of Interest

- Received research grants from Hamilton, Covidien and General Electric
- Received honorarium for lecturing from Covidien
- **■**Consultant for Newport

Inspiratory Time

- ■In spontaneous breathing patients, ventilator inspiratory time should equal patient desired inspiratory time.
- Spontaneous breathing inspiratory time ≤ 1.0 seconds.
- Patients with high ventilatory demand, inspiratory time maybe as short as 0.5 seconds.

Pressure targeted ventilation better able to match patient demand than volume ventilation, patient-ventilator synchrony enhanced with pressure ventilation

Pressure vs Volume Ventilation

	Pressure	Volume
Tidal Volume	Variable	Constant
Peak Alv Press	Constant	Variable
Peak Air Press	Constant	Variable
Flow Pattern	Decelerating	Preset
Peak Flow	Variable	Constant
Inspir Time	Preset	Preset
Minimum Rate	Preset	Preset

Pressure Support

- Provides little control over ventilation
- ■Only factor controlled is peak pressure
- ■Useful during initial support or following the most acute stage of ventilatory support
- Commonly used mode of ventilation

Rise Time

- Can be adjusted on all pressure targeted modes of ventiation
- Initial Pressure should not exceed set level
- No Delay in Initial Increase in Pressure
- Initial Pressure Rise should not be Concave
- If Ventilator does not have Rise Time, consider **cautiously** increasing pressure
- The future ventilators will automatically adjust rise time

PSV: Termination of Inspiration

- Primary method: Patients Inspiratory Flow Decreases to a Predetermined Level
 - % of Peak Inspiratory Flow, Usually 25%
 - ■Some low flow 5 LPM or
 - 5% of Peak Flow
 - -Other newer ventilators Variable termination criteria
 - ■From 5% to 85%

PSV: Termination of Inspiration

- Secondary Termination Criteria: End Inspiratory Pressure exceeds Target Level
- ■Tertiary Termination Criteria: Lengthy Inspiratory Time (2 to 3 Sec)

Inspiratory Termination Criteria

- Adjust termination criteria (PSV) or inspiratory time (PA/C) to avoid a spike in pressure at end exhalation and to avoid premature ending of the breath
- 20 to 25 % inspiratory termination criteria usually appropriate for most Patients
- The future ventilators will automatically adjust termination criteria to meet changing demand

PS vs. PA/C PS PA/C Pressure level Set Set Inspiratory Time Pt controlled Set Rate Pt controlled Back up Set Gas Delivery Pattern the Same for both Modes

Inappropriate PSV or PA/C Level

- ■To low a pressure level increases patient demand increasing patient work
- ■To high a level causes dysynchrony: forced exhalation, air trapping and increased ventilatory demand
- ■Frequently, decreasing PSV or PA/C level may be the correct choice

Proportional Assist Ventilation

- PAV based on the equation of motion
- Increases or decreases ventilatory support in proportion to patient effort
- Similar in concept to **Power Steering**
- Tracks changes in patient effort and adjusts ventilator output to reduce work
- Introduced by Younes in 1992

(Younes M, ARRD 1992;145:121)

Proposed Advantages of PAV

- -Changing ventilator output to meet patient demand
- -Variable volume
- -Improved synchrony
- -Reduced missed triggers
- -Adapts to patient neural control

Limitations of PAV

- ■Difficulty measuring elastance and resistance on-line breath to breath
- ■Treating the lung as if elastance and resistance are linear
- ■Intact ventilatory drive required
- Leaks

PAV versus PSV

- ■PAV preserved the ability of patients to modulate V_T in response to hypercapnia
- Changes in V_E during PSV results in changes in respiratory frequency
- ■Increasing V_E during PSV results in greater muscle effort and greater patient discomfort than PAV
 - ■Ranieri JAP 1996:81:426
 - ■Grasso AJRCCM 2000;161:819
 - ■Kondili ICM 2006:32:692

Gay AJRCCM 2001;164:1606

- RCT non-invasive PAV (n=21) vs. non-invasive PSV (n=23) in COPD patients in an acute exacerbation.
- Mortality and intubation rates similar
- PAV respiratory rate decreased to a greater extent , p = 0.02
- PCO₂ decreased faster with PAV, p < 0.05
- Mask comfort better with PAV, p <0.05
- PSV a greater number of patients refused Rx, p < 0.01

Rusterholtz ICM 2008;34:840

- RCT CPAP vs PAV during NIV in patients in acute cardiogenic pulmonary edema
- 3 centers, 36 patients
- CPAP at 10 cmH₂O, PAV at maximum assist, just below runaway PAV level
- No differences in physiologic variables
- 7 patients failed CPAP with 4 requiring intubation
- 7 patients failed PAV with 5 requiring intubation

Kondili Anes 2006;105:703

- PAV vs. PSV in 12 patients with ALI/ARDS due to sepsis, P/F 190±49 mmHg
- 30 min in random order mean airway pressure constant
- PAV RR higher 24.5+6.9 vs. 21.4+6.9, p < 0.05
- PAV VT lower 7.7+1.9 vs. 8.0+1.6 ml/Kg but not significantly
- PAV CI higher 4.4+1.6 vs. 4.1+1.3 L/min/m², p < 0.05

Xirouchaki ICM 2008;34:2026

- The use of PAV vs. PSV in critically ill patients for 48 hours
- On controlled ventilation > 36 hours
- Ability to trigger vent > 10/min
- \blacksquare PaO $_2 > 60$ with $F_IO_2 < 0.65$ and total PEEP < 15 cmH $_2O$
- pH > 7.30
- No severe hemodynamic instability
- No severe bronchospasm
- A stable neurological status

Xirouchaki ICM 2008; 34:2026

- Failure rate 11% vs. 22%, p = 0.04
- Proportion of patients exhibiting pt-vent dys-synchrony 5.6% vs. 29%, p < 0.001
- The proportion of patients meeting criteria for unassisted breathing did not differ

Bosma CCM 2007;35:1048

- PSV vs. PAV during sleep, cross over study one night each mode, randomly applied
- Both set to decrease inspiratory WOB by 50%
- \blacksquare MV and V_T lower and CO_2 greater PAV
- Arousals/hr 16 (2-74) vs. 9 (1-41) p < 0.02
- Overall sleep quality better PAV p < 0.05
 - Awakenings/hr 5.5 (1-24) vs. 3.5 (0-24)
 - Rapid eye movement 4% 90-23) vs. 9% (90-31)
 - Slow wave sleep 1% (0-10) vs. 3% (0-16)
- Asynchronies/hr 53 ± 59 vs. 24 ± 15 p < 0.02

Proportional Assist Ventilation

- Requires patients have an intact ventilatory drive!
- Requires ongoing assessment of lung mechanics!
- ■Unable to deal with auto-PEEP!!

Auto - PEEP

- The same effect on lung volume and intrathoracic pressure as applied PEEP
- Except auto PEEP only develops in lung units with long time constants, that is parts of the lung where compliance or airway resistance are increased
- Auto PEEP affects cardiovascular status the same way as applied PEEP

Auto-PEEP – Work of Breathing

■ Alveolar Pressure $+10 \text{ cmH}_2\text{O}$ ■ Airway Pressure $0 \text{ cmH}_2\text{O}$ ■ Trigger Pressure $-2 \text{ cmH}_2\text{O}$ ■ Patient Pressure change needed to trigger

PEEP – Assisted Ventilation COPD

- ■If auto-PEEP measured, set PEEP at 80% of measured level
- ■If auto-PEEP unmeasured, set PEEP at 5 cmH₂0
- ■If untriggered breathes still present, increase PEEP in 1 to 2 cmH₂O steps until patient rate and ventilator response rate are equal

NAVA Neurally Adjusted Ventilatory Assist

NAVA

- Beck ICM 2008;34:316
 - ■Able to deliver NPPV to lung injured rabbits
- Sinderby Chest 2007;131:711
 - Able to cycle on and off during maximal inspiratory effort in humans
- Beck Pediatr Res2007;61:289
 - ■Unloads diaphragm better than PSV in healthy rabbits
- Allo CCM 2006;34:2997
 - \blacksquare Unload effort in lung injured rabbits without large V_T
- Colombo ICM 2008;34:2010
 - ■Less over-assistance, better pt-vent synchrony

Thank You