

Pulmonary disease have only 6 Symptoms...

- Dyspnea
- Cough
- Sputum production
- · Hemoptysis
- Wheeze
- · Chest pain

However, Pulmonologists have only 4 things they can do

- · History/Physical exam
- · Pulmonary function testing
- Imaging
- Bronchoscopy

Luckily, only 4 diseases affect the lung anyways

- Infection
- Inflammatory/Autoimmune disease
- · Vascular disease
- Cancer

Our 6 symptoms...

- Dyspnea
- Cough
- · Sputum production
- Hemoptysis
- Wheeze
- · Chest pain

Objectives

- Dyspnea
 - Be able to identify the acutely ill dyspneic patient
 - Understand the mechanisms of dyspnea
 - Develop an approach to management of the dyspneic patient
- Hemoptysis
 - Develop an approach to hemoptysis
 - Appreciate the broad differential

Dyspnea

Differential Diagnosis of Dyspnea According to Category of Disease

Nutritional Cardiac Pharmacologic Pulmonary Endocrine Pregnancy Pulmonary GΙ Hematologic Psychiatric Renal Infectious Deconditioning/obesity Oncologic Larynx/upper airway Rheumatologic

Dyspnea

- 75-92% of cases in the ED are due to cardiopulmonary disease
- 46-85% of cases in outpatients are due to cardiopulmonary disease

Dyspnea

- Pneumonia
- Acute exacebation COPD/asthma
- · Congestive heart failure
- · Pulmonary embolism
- Interstitial pulmonary fibrosis

When is dyspnea an emergency?

- When the patient is:
 - Hypoxic
 - Hypercapnic
 - In extremis

Hypoxia

- What specifically does hypoxia mean?
- Why is hypoxia bad?

Definitions

- Hypoxia
- Hypoxemia

More definitions

- S_P0₂
- P_a0₂
- P_A0₂

Even more definitions...

- C_aO₂ (arterial oxygen content)
 - 1.34 (Hgb) (S_PO_2) + 0.003 P_aO_2
- DO₂ (oxygen delivery)
 - HR (SV) (C_aO_2)

Types of hypoxia

- Anemic
- Stagnant
- Hypoxemic
- Histotoxic

Types of hypoxia

- $\begin{array}{lll} \bullet \ \, \text{Anemic} & \text{N S}_{\text{P}} \text{O}_2 & \text{N P}_{\text{a}} \text{O}_2 & \text{ψ C_{a}O}_2 \\ & -\, \psi \, \text{Hgb} \end{array}$

- Histotoxic N S_P0₂ N P_a0₂ N C_aO₂

 → ability to utilize O₂

Hypoxemic Hypoxia

• 5 Causes...

Hypoxemic Hypoxia

- 5 Causes:
 - $-\Psi P_iO_2$
 - Hypoventilation
 - V/Q mismatch
 - Shunt
 - Diffusion impairment
 - (Acidosis)
 - (Poor venous admixture)

Aside I: A-a gradient

- $P_A O_2 = F_i O_2 (P_B P_{H20}) P_a C02 / 0.8$
- Predicted A-a gradient:
 - = 2.5 + 0.21 (age in years)
 - +/- 11 mmHg

Aside II: Paroxysmal desaturation

- Mucous plugging
- Aspiration
- (Flash pulmonary edema)
- (PE)

Management of Hypoxia

- Correct Hgb
- IV fluids
- Inotropes
- Address the underlying cause

Basic Management of Hypoxemia?

Management of Hypoxemia I

- Supplemental O₂
- NIMV (?)
- Intubation/Ventilation
- ↑PEEP/ ↑F_iO₂

Aside III: A note on O₂

- We have a vague idea how much O₂ we are giving at any given moment
- Nasal cannula (24-40% O₂)
- Oximizer (?)
- Non-rebreather Mask (~60% O₂)
- Optiflow (70-90% O₂)

More advanced management of Hypoxemia?

Management of Hypoxemia II

- · Recruitment maneuvers
- · Inverse ratio ventilation
- Vasodilators (epoprostenol/No
- Prone ventilation
- High frequency jet ventilation
- Liquid ventilation
- Extrcorporeal membrane oxygenation

Take home points on hypoxia

- Don't forget about hypoxia
- 5 causes of hypoxemia
- Treat the specific cause
- Remember the basic principles of hypoxia management
- Hypoxemia can be difficult to fix

Hypercapnia

- What is the definition of hypercapnia?
- Why is hypercapnia bad?
- How do I tell if hypercapnia is acute or chronic?

Mechanisms of Hypercapnia

- $P_aCO_2 = (V_{CO2} \times K)/V_A$
- Therefore, \uparrow P_aCO₂ could be due to:

V_A = V_E - V_D

What causes ↑ V_{CO2}

- Fever
- Exercise
- · Carbohydrate rich diet
- These are generally minor considerations, most people can increase V_E sufficiently to compensate for increased V_{CO2}

What causes $\bigvee V_{A^2}$

- ↓ V_F
 - ↓ RR
 - $-\Psi V_T$
- 1 V_D

English, please!

- · Disorders of central control
- · Disorders of motor neurons
- Disorders of peripheral nerves
- · Disorders of NMJ
- Disorders of the respiratory muscles
- · Disorders of the chest wall
- · Disorders of the lung parenchyma
- · Disorders of the airways

Potential clues to etiology

- A a gradient
 - Only increased in disease affecting the lung itself
- RV/TLC ratio
 - Usually increased in disorders of motor neurons, disorders of peripheral nerves, disorders of NMJ and disorders of the respiratory muscles

Aside IV: Hypecapnia with O_2 ?

- · Not just an urban myth
- · 3 mechanisms:
 - Increased physiologic deadspace
 - Decreased hypoxic ventilatory drive
 - Haldane effect: O₂ displaces CO₂ from Hgb

Management of Hypercapnia

- · Respiratory stimulants
- CPAP (?)
- BiPAP

BiPAP

- · Contraindications:
 - Decreased/Altered LOC
 - Hemodynamic instability
 - Inability to fit mask
 - Vomiting

BiPAP

- Indications:
 - Most beneficial in patients with COPD and cardiogenic pulmonary edema complicated by hypercarbia.
 - Non-hypercarbic COPD/CHF
 - Hypoxemic respiratory failure
 - Immunocompromised patients
 - Adjunct to weaning in COPD patients

How do I use BiPAP?

- · Establish indication
- Ensure no contraindication
- · Ensure correct setting
- Start at 12/5 cmH₂0
- Check ABG in 1-2 hrs

How do I use BiPAP?

- Patient uncomfortable:
 - Change mask
 - Change mode
- If P_aCO₂ remains high:
 - Increase IPAP
 - Intubate?
- If P_a0₂ remains low:
 - Increase FiO₂
 - Increase EPAP (analagous to PEEP)
 - Intubate

Take home points on Hypercapnia

- Establish cause
- Decide on management
- · Reassess periodically
- Troubleshoot
- Usually easier to fix than hypoxemia

Acute management of Hemoptysis

- True hemoptysis?
- Massive or non-massive?
- ABCs
- Protect non-bleeding lung
- Bronchoscopy
 - Rigid
 - Flexible
- Arteriographic embolization

Approach to Hemoptysis

- History/Physical Exam
- Directed labs/serology
- Urinalysis
- CXR
- CT Chest
- Bronchoscopy
- Echocardiography

Common Causes of Hemoptysis

- Arteriobronchial fistula
- Congestive heart failure
- Pulmonary arteriovenous fistula
- Diffuse intrapulmonary hemorrhage (DAH)
- Diffuse parenchymal disease
- latrogenic
- Malposition of chest tube
- · Pulmonary artery rupture
- Tracheoartery fistula
- Aspergilloma

- Bronchiectasis
- Bronchitis
- CF
- · Lung abscess
- Sporotrichosis
- Tuberculosis
- Malignancies
- Bronchogenic carcinoma
- Leukemia
- · Metastatic cancer

A brief word on DAH...

- Capillaritis:
 - Wegener's
 - MPA
 - Isolated capillaritis
 - CTD
 - Antiphospholipid Abs
 - Antiphospholipid A
 Cryoglobulinemia
 - Goodpasture's
 - Drug induced
 - Acute rejection

- · Bland hemorrhage:
 - Idiopathic hemosiderosis
 - SLE
 - Goodpasture's
 - DAD
 - Mitral stenosis
 - Coagulation disordersPVOD
 - LAM/TS
 - Drug induced

Take home points on Hemoptysis

- · ABCs first
- Supportive measures
- Once patient is temporized, consider the etiology

Objectives

- Dyspnea
 - Be able to identify the acutely ill dyspneic patient
 - Understand the mechanisms of dyspnea
 - Develop an approach to management of the dyspneic patient
- Hemoptysis
 - Develop an approach to hemoptysis
 - Appreciate the broad differential

