Pulmonary Emergencies

Medicine ½ Day
July 24, 2008
Ali Kapasi R5.8

Pulmonary disease have only 6 Symptoms…

- Dyspnea
- Cough
- Sputum production
- Hemoptysis
- Wheeze
- Chest pain

However, Pulmonologists have only 4 things they can do

- History/Physical exam
- Pulmonary function testing
- Imaging
- Bronchoscopy

Luckily, only 4 diseases affect the lung anyways

- Infection
- Inflammatory/Autoimmune disease
- Vascular disease
- Cancer

Our 6 symptoms…

- Dyspnea
- Cough
- Sputum production
- Hemoptysis
- Wheeze
- Chest pain

Objectives

- Dyspnea
 - Be able to identify the acutely ill dyspneic patient
 - Understand the mechanisms of dyspnea
 - Develop an approach to management of the dyspneic patient
- Hemoptysis
 - Develop an approach to hemoptysis
 - Appreciate the broad differential
Dyspnea

According to Category of Disease

- Cardiac
- Pulmonary
- Endocrine
- Pregnancy
- GI
- Hematologic
- Psychiatric
- Infectious
- Renal
- Deconditioning/obesity
- Oncologic
- Larynx/upper airway
- Rheumatologic

When is dyspnea an emergency?

- When the patient is:
 - Hypoxic
 - Hypercapnic
 - In extremis

Hypoxia

- What specifically does hypoxia mean?
- Why is hypoxia bad?
Definitions

• Hypoxia
• Hypoxemia

More definitions

• S_pO_2
• P_aO_2
• P_{aO_2}

Even more definitions...

• C_aO_2 (arterial oxygen content)
 • $1.34 \text{ (Hgb)} (S_pO_2) + 0.003 \text{ Pa}_O_2$
• DO_2 (oxygen delivery)
 • HR (SV) (C_aO_2)

Types of hypoxia

• Anemic
• Stagnant
• Hypoxemic
• Histotoxic

Types of hypoxia

• Anemic $\downarrow S_pO_2$ $N P_{aO_2}$ $\downarrow C_aO_2$
 – $\downarrow \text{Hgb}$
• Stagnant $\downarrow S_pO_2$ $N P_{aO_2}$ $N C_aO_2$
 – $\downarrow DO_2$
• Hypoxemic $\downarrow S_pO_2$ $\downarrow P_{aO_2}$ $\downarrow C_aO_2$
• Histotoxic $\downarrow S_pO_2$ $N P_{aO_2}$ $N C_aO_2$
 – $\downarrow \text{ability to utilize O}_2$

Hypoxemic Hypoxia

• 5 Causes…
Hypoxemic Hypoxia

• 5 Causes:
 – $\downarrow P_iO_2$
 – Hypoventilation
 – V/Q mismatch
 – Shunt
 – Diffusion impairment
 – (Acidosis)
 – (Poor venous admixture)

Aside I: A-a gradient

• $P_{A}O_2 = F_iO_2 (P_B-P_H2O) - P_aCO2 / 0.8$
• Predicted A-a gradient:
 – $= 2.5 + 0.21 \text{ (age in years)}$
 – +/- 11 mmHg

Aside II: Paroxysmal desaturation

• Mucous plugging
• Aspiration
• (Flash pulmonary edema)
• (PE)

Management of Hypoxemia

• Correct Hgb
• IV fluids
• Inotropes
• Address the underlying cause

Basic Management of Hypoxemia?

• Supplemental O_2
• NIMV (?)
• Intubation/Ventilation
• \uparrowPEEP/ $\uparrow F_iO_2$
Aside III: A note on O₂

- We have a vague idea how much O₂ we are giving at any given moment
- Nasal cannula (24-40% O₂)
- Oximizer (?)
- Non-rebreather Mask (~60% O₂)
- Optiflow (70-90% O₂)

More advanced management of Hypoxemia?

Management of Hypoxemia II

- Recruitment maneuvers
- Inverse ratio ventilation
- Vasodilators (epoprostenol/NO)
- Prone ventilation
- High frequency jet ventilation
- Liquid ventilation
- Extracorporeal membrane oxygenation

Take home points on hypoxia

- Don't forget about hypoxia
- 5 causes of hypoxemia
- Treat the specific cause
- Remember the basic principles of hypoxia management
- Hypoxemia can be difficult to fix

Hypercapnia

- What is the definition of hypercapnia?
- Why is hypercapnia bad?
- How do I tell if hypercapnia is acute or chronic?

Mechanisms of Hypercapnia

- \(P_aCO_2 = (V_{CO_2} \times K)/(V_A) \)
- Therefore, \(\uparrow P_aCO_2 \) could be due to:
 - \(\uparrow V_{CO_2} \)
 - \(\downarrow V_A \)
 - \(V_A = V_e - V_D \)
What causes $\uparrow V_{CO2}$

- Fever
- Exercise
- Carbohydrate rich diet
- These are generally minor considerations, most people can increase V_E sufficiently to compensate for increased V_{CO2}

What causes $\downarrow V_A$?

- $\downarrow V_E$
 - $\downarrow RR$
 - $\downarrow V_T$
- $\uparrow V_D$

English, please!

- Disorders of central control
- Disorders of motor neurons
- Disorders of peripheral nerves
- Disorders of NMJ
- Disorders of the respiratory muscles
- Disorders of the chest wall
- Disorders of the lung parenchyma
- Disorders of the airways

Potential clues to etiology

- A – a gradient
 - Only increased in disease affecting the lung itself
- RV/TLC ratio
 - Usually increased in disorders of motor neurons, disorders of peripheral nerves, disorders of NMJ and disorders of the respiratory muscles

Aside IV: Hypecapnia with O_2?

- Not just an urban myth
- 3 mechanisms:
 - Increased physiologic deadspace
 - Decreased hypoxic ventilatory drive
 - Haldane effect: O_2 displaces CO_2 from Hgb

Management of Hypercapnia

- Respiratory stimulants
- CPAP (?)
- BiPAP
BiPAP

• Contraindications:
 – Decreased/Altered LOC
 – Hemodynamic instability
 – Inability to fit mask
 – Vomiting

How do I use BiPAP?

• Establish indication
• Ensure no contraindication
• Ensure correct setting
• Start at 12/5 cmH₂O
• Check ABG in 1-2 hrs

Take home points on Hypercapnia

• Establish cause
• Decide on management
• Reassess periodically
• Troubleshoot
• Usually easier to fix than hypoxemia

BiPAP

• Indications:
 – Most beneficial in patients with COPD and cardiogenic pulmonary edema complicated by hypercarbia.
 – Non-hypercarbic COPD/CHF
 – Hypoxemic respiratory failure
 – Immunocompromised patients
 – Adjunct to weaning in COPD patients

How do I use BiPAP?

• Patient uncomfortable:
 – Change mask
 – Change mode
• If PₐCO₂ remains high:
 – Increase IPAP
 – Intubate?
• If PₐO₂ remains low:
 – Increase FiO₂
 – Increase EPAP (analagous to PEEP)
 – Intubate

Acute management of Hemoptysis

• True hemoptysis?
• Massive or non-massive?
• ABCs
• Protect non-bleeding lung
 – Bronchoscopy
 – Rigid
 – Flexible
• Arteriographic embolization
Approach to Hemoptysis

• History/Physical Exam
• Directed labs/serology
• Urinalysis
• CXR
• CT Chest
• Bronchoscopy
• Echocardiography

Common Causes of Hemoptysis

• Arteriobronchial fistula
• Congestive heart failure
• Pulmonary arteriovenous fistula
• Diffuse intrapulmonary hemorrhage (DAH)
• Diffuse parenchymal disease
• Iatrogenic
• Malposition of chest tube
• Pulmonary artery rupture
• Tracheoartery fistula
• Aspergilloma

A brief word on DAH…

• Capillaritis:
 – Wegener’s
 – MPA
 – Isolated capillaritis
 – CTD
 – Antiphospholipid Abs
 – Cryoglobulinemia
 – Goodpasture’s
 – Drug induced
 – Acute rejection

• Bland hemorrhage:
 – Idiopathic hemosiderosis
 – SLE
 – Goodpasture’s
 – DAD
 – Mitral stenosis
 – Coagulation disorders
 – PVOD
 – LAM/TS
 – Drug induced

Take home points on Hemoptysis

• ABCs first
• Supportive measures
• Once patient is temporized, consider the etiology

Objectives

• Dyspnea
 – Be able to identify the acutely ill dyspneic patient
 – Understand the mechanisms of dyspnea
 – Develop an approach to management of the dyspneic patient

• Hemoptysis
 – Develop an approach to hemoptysis
 – Appreciate the broad differential

Questions?

akapasi@ualberta.ca